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1. Introduction

Perturbative renormalization factor is a source of systematic errors in numerical investi-

gation of lattice QCD. There has been progress in numerical simulation with dynamical

fermions nowadays and sources of systematic error is decreasing. Evaluation of renor-

malization factors in non-perturbative method is required. Finite volume renormalization

scheme is one of the most fascinating procedure to define non-perturbative renormalization

scheme on lattice. By using the step scaling function one can follow running of renormalized

quantities from low energy region to perturbative region with reasonable cost for recent

computers. It has been established that the Schrödinger functional is very convenient to

define a field theory in a finite volume for renormalization scheme.
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The Schrödinger functional (SF) is defined as a transition amplitude between two

boundary states with finite time separation [1 – 4]

Z =
〈
C ′;x0 = T |C;x0 = 0

〉
=

∫
DΦe−S[Φ] (1.1)

and is written in a path integral representation of the field theory with some boundary

condition. The renormalization scale can be introduced by a finite volume T ×L3 ∼ L4 of

the system in this formulation defined through the SF. One of motivation to adopt the SF

is that it matches with the lattice regularization very well, although the SF is independent

of a regularization. The formulation is already accomplished for the non-linear σ-model

[5], the non-Abelian gauge theory [6] and the QCD [7, 8] including O(a) improvement

procedure for the Wilson fermion [9, 10]. (See Ref. [11] for review.)

Several renormalization quantities like running gauge coupling [12 – 18], Z-factors and

O(a) improvement factors [19 – 24] are extracted conveniently by using a Dirichlet boundary

conditions for spatial component of the gauge field

Ak(x)|x0=0 = Ck(~x), Ak(x)|x0=T = C ′
k(~x) (1.2)

and for the quark fields

P+ψ(x)|x0=0 = ρ(~x), P−ψ(x)|x0=T = ρ′(~x), (1.3)

ψ(x)P−|x0=0 = ρ(~x), ψ(x)P+|x0=T = ρ′(~x), (1.4)

P± =
1 ± γ0

2
. (1.5)

One of advantage of this Dirichlet boundary condition is that the system acquire a mass

gap proportional to 1/T and there is no infra-red divergence. The finite volume plays a

role of an infra-red cut-off. Field theory with Dirichlet boundary condition is shown to be

renormalizable for the pure gauge theory [6] and QCD at one loop order [8].

Although it is essential to adopt Dirichlet boundary condition for a mass gap and

renormalizability, it has a potential problem of zero mode in fermion system. For instance

starting from a free Lagrangian

L = ψ (γµ∂µ + m)ψ (1.6)

with positive constant mass m > 0 and the Dirichlet boundary condition

P−ψ|x0=0 = 0, P+ψ|x0=T = 0 (1.7)

the zero eigenvalue equation (γ0∂0 + m) ψ = 0 in temporal direction allows a solution

ψ = P+e−mx0 + P−e−m(T−x0) (1.8)

in T → ∞ limit and a similar solution remains even for finite T with an exponentially

small eigenvalue ∝ e−mT . 1 In the SF formalism this solution is forbidden by adopting

1If we keep the mass in the range 0 < m < 1/T we have a finite eigenvalue [7].
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an “opposite” Dirichlet boundary condition (1.3) and the system has a finite gap even for

m = 0 [7].

For the Wilson fermion [7] on lattice the Dirichlet boundary condition is automatically

chosen among

P±ψ|x0=0 = 0, P∓ψ|x0=T = 0 (1.9)

depending on signature of the Wilson term. For example if we adopt a typical signature of

the Wilson parameter r = 1

DW = γµ
1

2

(
∇∗

µ + ∇µ

)
− a

2
∇∗

µ∇µ + M (1.10)

the allowed Dirichlet boundary condition is the same as (1.3). In this case the zero mode

solution is forbidden by choosing a proper signature for the mass term; the mass should be

kept positive M ≥ 0 to eliminate the zero mode [7, 17]. 2

However as was discussed in the previous paper [25, 26] this zero mode problem may

become fatal in the overlap Dirac operator [27, 28] and the domain-wall fermion [29 –

31]. Both the overlap Dirac operator and the domain-wall fermion is defined through the

four dimensional Wilson Dirac operator (1.10) but with a relatively opposite signature for

the Wilson fermion mass parameter M (domain-wall height) to the Wilson parameter r.

An opposite signature is necessary to impose heavy masses on the doublers and a single

massless mode to survive. A requirement to the four dimensional Wilson Dirac operator

is that DW should have a gap from zero. If this is not the case the chiral Ward-Takahashi

identity is broken dynamically for the domain-wall fermion that the explicit breaking term

does not vanish [31]. For the overlap Dirac operator closing of the gap may cause to break

locality of the Dirac operator [32].

If the Dirichlet boundary condition (1.3) (1.4) is imposed to all fermion fields of the

overlap Dirac operator or the domain-wall fermion exponentially small eigenvalues are al-

lowed in the kernel DW because of a relatively opposite signature of the Wilson parameter

and the domain-wall height. Since these small eigenvalues are continuous in spatial mo-

mentum a gap closes in DW , which may become a lethal problem in large T limit to break

essential properties of the chiral Dirac operator.

One may wonder that the small eigenvalues are boundary effect and should be localized

near the temporal boundary. If one considers physics apart from the boundary there should

be no harm. However this is not the case for our purpose to define renormalization scheme.

In finite volume scheme the renormalization scale is given by a size of the box, which is

realized by considering a correlation function of operators to be separated by an order of

box size. At least one of operators cannot be away from the boundary. Furthermore it is

convenient for the SF scheme to set one of the operator at the boundary.

In order to solve this problem an orbifolding projection procedure was proposed for

the overlap Dirac operator in Ref. [25]. 3 In this formulation we start from a theory on

2This condition for mass M is valid at tree level. The Wilson fermion mass receives additive quantum

correction δM with interaction and the condition becomes M + δM ≥ 0.
3After finishing this paper a new paper appeared to propose a method to define chiral symmetric theory

with the SF Dirichlet boundary condition [33].
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S1 × R3 and impose orbifolding projection S1/Z2 on temporal direction. Since we have

set anti-periodic boundary condition in temporal direction S1 before projection we have

a mass gap proportional to 1/T , which is not broken by the orbifolding. Because of this

mass gap we can avoid the zero mode problem of Dirichlet boundary condition.

In this paper the orbifolding formulation of the SF boundary condition is applied to

the domain-wall fermion. In section 2 the domain-wall fermion on S1 × T 3 is introduced.

Formulation of domain-wall fermion in finite volume with the SF boundary condition is

discussed in section 3. Application of orbifolding procedure to fermionic part is almost

straightforward as was discussed in Ref. [26]. We can use the same kind of symmetry

argument as in the previous paper [25]. Difficulty is in a treatment of the Pauli-Villars

field. We adopted effective Dirac operator for this purpose. The proper Dirichlet boundary

condition (1.3) (1.4) may not be the unique choice to define a finite volume renormalization

scheme. In section 4 a chirally twisted boundary condition is discussed to define a finite

volume field theory keeping a good property of the SF boundary condition. Section 5 is

devoted for conclusion.

2. Domain-wall fermion action

The purpose of this paper is to introduce the domain-wall fermion system, with which

we can define a finite volume renormalization scheme (Schrödinger functional scheme).

The formulation for the pure Yang-Mills theory has been established in Ref. [6] by using

a transition amplitude between two boundary states (Schrödinger functional). In this

formulation the gauge field (link variable) lives in a finite box NT × N3
L with a periodic

boundary condition in spatial direction and the SF Dirichlet boundary condition at the

temporal boundary

Uk(~x, 0) = Wk(~x), Uk(~x,NT ) = W ′
k(~x). (2.1)

We shall adopt this procedure for the gauge part and treat the gauge field as an external

field in this paper.

The transition amplitude of the fermion field has been introduced for the Wilson

fermion using the transfer matrix in Ref. [7]. The fermion field resides in the same finite

box for the path integral formalism with periodic or twisted boundary condition [9] in

spatial direction and the SF Dirichlet boundary condition (1.3) and (1.4) in temporal

direction. This fermion system is renormalizable including a shift in the boundary field ρ

and ρ [8]. Another specific property is that this system has a mass gap proportional to the

temporal length 1/T and the finite box serves as an infra-red regulator.

We shall construct the domain-wall fermion system in a finite box keeping the same

sort of properties as the Wilson fermion; (i) the theory has a mass gap proportional to 1/T ,

(ii) there are boundary fields ρ and ρ in temporal direction and the theory is renormalizable

including a shift in these fields. If one naively impose the boundary condition (1.3) and (1.4)

to all the fifth dimensional field ψ(x, s) then the chiral symmetry is broken “dynamically”

as explained in the introduction. In order to avoid this problem we adopt an orbifolding

procedure, where we start from doubled time length 2NT and fermion fields in the finite box
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of length NT with the Dirichlet boundary condition is realized by an orbifolding projection.

For this purpose we copy gauge configuration with the SF boundary condition (2.1) into

negative region and produce a time reflection symmetric configuration, which satisfies

Uk(~x, x0) = Uk(~x,−x0), U0(~x, x0) = U †
0 (~x,−x0 − 1) (2.2)

as in the previous formulation of overlap Dirac operator [25]. The periodic boundary

condition is set with length 2NT

Uµ(~x, x0 + 2NT ) = Uµ(~x, x0). (2.3)

In this paper we adopt the Shamir’s domain-wall fermion [30, 31] on a lattice 2NT ×
N3

L × N5

S = a4
∑

~x,~y

NT∑

x0,y0=−NT +1

N5∑

s,t=1

ψ(x, s)Ddwf(x, y; s, t)ψ(y, t). (2.4)

x0 and y0 represent the temporal coordinate which runs −NT + 1 ≤ x0 ≤ NT . s and t

are used for the fifth dimensional coordinate which runs 1 ≤ s ≤ N5. Summation over

repeated temporal and fifth dimensional indices is taken implicitly in the following unless

otherwise stated. For later use of orbifolding we set the anti-periodic boundary condition

in temporal direction

ψ(~x, x0 + 2NT , s) = −ψ(~x, x0, s), ψ(~x, x0 + 2NT , s) = −ψ(~x, x0, s). (2.5)

The Dirac operator is given as a five dimensional Wilson’s one with conventional Wilson

parameter r = 1 and negative mass parameter (domain-wall height) −M with 0 < M < 2

aDdwf(x, y; s, t) = γMDM − 1

2
D2 − M

=

(−1 + γ0

2
U0(x)W+

x0,y0
+

−1 − γ0

2
U †

0 (y)W−
x0,y0

)
δxi,yi

δs,t

+

(−1 + γi

2
Ui(x)δyi,xi+1 +

−1 − γi

2
U †

i (y)δyi,xi−1

)
δx0,y0δs,t

+

(−1 + γ5

2
Ω+(mf )s,t +

−1 − γ5

2
Ω−(mf )s,t

)
δx,y

+(5 − M)δx,yδs,t, (2.6)

where W± are hopping operator in temporal direction with anti-periodic boundary condi-

tion, whose explicit form for 2NT = 6 is written as

W+
x0,y0

=




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0




, W− =
(
W+

)†
. (2.7)
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Ω± are hopping operator in fifth direction with Dirichlet boundary condition (for massless

case), whose matrix form for N5 = 6 is given by

Ω+(mf )s,t =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−mf 0 0 0 0 0




, Ω−(mf ) =
(
Ω+(mf )

)†
. (2.8)

Here mf is a physical quark mass.

The physical quark field is defined by the fifth dimensional boundary field with chiral

projection

q(x) = (PLδs,1 + PRδs,N5)ψ(x, s), (2.9)

q(x) = ψ(x, s) (δs,N5PL + δs,1PR) , (2.10)

PR/L =
1 ± γ5

2
. (2.11)

The physical quark mass term is given as an ordinary form Lmass = mfqq with this quark

field.

3. Schrödinger functional with conventional boundary condition

In this section we shall construct the domain-wall fermion system in finite box, in which

the conventional SF Dirichlet boundary condition (1.3) and (1.4) is satisfied by the physical

quark field. This formulation will be done by making use of an orbifolding in temporal

direction.

3.1 Orbifolding construction of SF boundary condition

Since we adopted anti-periodic boundary condition in temporal direction with period 2NT

fermion field is living on S1. The orbifolding S1/Z2 is to identify the negative time coordi-

nate with the positive one x0 = −x0. Identification of fields on S1 is performed according

to the symmetry of the theory including the time reflection. A homogeneous Dirichlet

boundary condition will appear at fixed points.

The time reversal symmetry of the domain-wall fermion is given by

ψ(~x, x0, s) → Σx0,y0;s,tψ(~x, y0, t), ψ(~x, x0, s) → ψ(~x, y0, t)Σy0,x0;t,s, (3.1)

Σx0,y0;s,t = iγ5γ0Rx0,y0Ps,t, (3.2)

where P is a parity transformation in fifth direction Ps,tψ(~x, x0, t) = ψ(~x, x0, N5 − s + 1),

whose matrix representation is

Ps,t =




0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0




, (N5 = 6) (3.3)
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and R is a time reflection operator acting on the temporal direction Rx0,y0ψ(~x, y0, s) =

ψ(~x,−x0, s), whose matrix form is given by

Rx0,y0 =




0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1




, (2NT = 6) (3.4)

to satisfy anti-periodicity in 2NT . We notice that R has a symmetric fixed point x0 = 0

and an anti-symmetric fixed point x0 = NT

Rψ(~x, 0, s) = ψ(~x, 0, s), Rψ(~x,NT , s) = −ψ(~x,NT , s). (3.5)

The domain-wall fermion Dirac operator is invariant under the time reflection

[
Σ,Ddwf

]
= 0 (3.6)

since the reflection invariant gauge configuration (2.2) is adopted .

In order to realize the SF boundary condition at the fixed points we need to combine

the chiral transformation with the time reflection [25]. The chiral transformation is given

by a vector like rotation of fermion field but with a different charge for two boundaries in

fifth direction [31]

ψ(x, s) → iQs,tψ(x, t), ψ(x, s) → −ψ(x, t)iQt,s, (3.7)

where Q is the vector charge matrix which flips sign in the middle of the fifth direction 4

Qs,t =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




, (N5 = 6). (3.8)

We consider massless mf = 0 theory in this sub-section.

Here we should notice that this chiral rotation is not an exact symmetry of the domain-

wall fermion Dirac operator but we have an explicit breaking term

QDdwfQ − Ddwf = 2X, (3.9)

where X is a contribution from the middle layer, which picks up a charge difference there

aX =
(
PLδ

s,
N5
2

δ
t,

N5
2

+1
+ PRδ

s,
N5
2

+1
δ
t,

N5
2

)
δx,y. (3.10)

4We notice that definition of Q is rather ambiguous. A requirement is that a total distance from a kink

(where signature of the vector charge changes) to both the boundary is O(N5). In this sense one can set

the kink anywhere. Although definition of the explicit breaking term X changes, the same proof of the

chiral WT identity in Ref. [31] is applicable. One can define Q appropriately for odd N5.
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However it was discussed in Ref. [31] that if we consider correlation functions between the

bilinear ψXψ and the physical quark operators contribution is suppressed exponentially

in N5 under the condition that the transfer matrix in fifth direction has a gap from unity.

Furthermore the domain-wall fermion Dirac operator with explicit time reflection invariance

(3.6) does not have index [25], since the contribution to the index [34]

lim
N5→∞

a4
∑

x

〈
ψ(x, s)γ5Xs,tψ(x, t)

〉
= − lim

N5→∞
tr

(
γ5X

1

Ddwf

)
(3.11)

can be shown to vanish by using anti-commutativity
{
γ5X,Σ

}
= 0. We expect that X has

no effect on anomaly. We shall ignore this term in the following by constraining that we

treat the physical quark Green’s functions only.

Another way to avoid the explicit breaking term is to include it into the Dirac operator.

By using an anti-commutative nature {Q,X} = 0 we can define a chiral symmetric Dirac

operator by

Dsym
dwf = Ddwf + X, (3.12)

which commutes with Q exactly even at finite N5. The orbifolding projection in the

following can be defined in an exact sense. A compensation of the exact chiral symmetry

at finite N5 is a non-locality in the effective Dirac operator, which however is suppressed

exponentially in N5. Detailed property of this Dirac operator is deferred in appendix A.

Combining the time reversal transformation (3.1) and the chiral transformation (3.7)

we define the orbifolding transformation

ψ(~x, x0, s) → Ax0,y0;s,tψ(~x, y0, t), ψ(~x, x0, s) → ψ(~x, y0, t)Ay0,x0;t,s, (3.13)

Ax0,y0;s,t = γ0γ5(PQ)s,tRx0,y0. (3.14)

The domain-wall fermion Dirac operator has time reversal symmetry (3.6) and we assume

that the chiral transformation is an exact symmetry of the Dirac operator

[Q,Ddwf ] = 0 (3.15)

by ignoring effect of the explicit breaking term X or by adopting the symmetric Dirac

operator 5. The orbifolding transformation becomes symmetry of the Dirac operator

[A,Ddwf ] = 0. (3.16)

In order to show this we may use a relation {P,Q} = 0.

The operator A satisfies a property A2 = 1 and can be used to define a projection

operator. The orbifolding identification of the fermion field is given by projecting out the

following symmetric sub-space

Π−ψ(x, s) = 0,
(
ψ Π−

)
(x, s) = 0, Π± =

1 ± A

2
. (3.17)

5Effect of the explicit breaking term X at finite N5 is discussed in appendix B.
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This projection relates fields in negative region to those in the positive ψ(~x,−x0, s) =

γ0γ5PQψ(~x, x0, s), which means fields in the negative is not independent. As will be

discussed in appendix C if we consider non-negative region 0 ≤ x0 ≤ NT , fields in the bulk

0 < x0 < NT is not constrained. Only the boundary fields obey a projection condition

P−ψ(~x, 0, s) = 0, P+ψ(~x,NT , s) = 0, (3.18)
(
ψ P−

)
(~x, 0, s) = 0,

(
ψ P+

)
(~x,NT , s) = 0 (3.19)

with projection operator

P± =
1 ± Γ

2
, Γ = γ0γ5PQ. (3.20)

The orbifolding projection for the physical quark field is given by picking up the bound-

ary components from the projected fermion field

(PLδs,1 + PRδs,N5)
(
Π−

)
s,t

ψ(x, t) = Π+q(x) = 0, (3.21)

ψ(x, t)
(
Π−

)
t,s

(δs,N5PL + δs,1PR) = q(x)Π− = 0, (3.22)

Π± =
1 ± Γ

2
, Γ = γ0R, (3.23)

which turns out to be the same condition for the continuum theory in Ref. [25]. The proper

homogeneous SF Dirichlet boundary condition is provided at fixed points x0 = 0, NT for

the physical quark fields

P+q(x)|x0=0 = 0, P−q(x)|x0=NT
= 0, (3.24)

q(x)P−|x0=0 = 0, q(x)P+|x0=NT
= 0. (3.25)

The massless orbifolded action is given by projection

SSF = a4
∑ 1

2
ψDSF

dwfψ, DSF
dwf = Π+DdwfΠ+. (3.26)

We notice the massless SF Dirac operator DSF
dwf breaks “chiral symmetry” (3.7) explicitly

by the projection Π+. However the symmetry breaking effect comes from the projection

(3.18) (3.19) at the boundary. Ordinary chiral Ward-Takahashi identity [31] is satisfied in

the bulk 0 < x0 < NT where fields are not constrained.

Our original theory on S1 has a gap because of the anti-periodic boundary condition.

This gap is kept intact after orbifolding, which can be confirmed at tree level. We have a

Hermiticity relation for the SF Dirac operator

(
DSF

dwf

)†
= γ5PDSF

dwfγ5P (3.27)

and this Dirac operator connects the same Hilbert sub-space

DSF
dwf : H− → H−, H− =

{
ψ

∣∣Π−ψ = 0
}

. (3.28)
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It is straightforward to solve the eigenvalue problem numerically at tree level. Here we

omit the detail but we can easily see that the lowest eigenvalue (a gap) converge to π/2T

in the continuum limit, which agrees with that of continuum massless theory [7].

We have a comment on mass term. We dropped quark mass term since it breaks the

chiral symmetry. However as was discussed in Ref. [25] it is possible to introduce a mass

term which is consistent with the orbifolding symmetry (3.13). One of candidates is

Smass =
∑

x

mfq(x)η(x0)q(x), (3.29)

where η is an anti-symmetric step function

η(−x0) = −η(x0), η(x0 + 2T ) = η(x0),

η(x0) = 1 for 0 < x0 < NT . (3.30)

As will be discussed in appendix C the bulk part of this projected Dirac operator is

exactly the same as that of the ordinary domain-wall fermion. The physical quark fields

satisfies the proper boundary condition. Together with existence of the mass gap this

orbifolded system is a strong candidate of QCD with the SF boundary condition to define

a finite volume scheme.

3.2 Free propagator

In order to check that the orbifolded domain-wall fermion system describes the QCD with

the SF boundary condition properly we consider the physical quark propagator at tree level.

The massless fermion propagator is given as an inverse of the projected Dirac operator

a3GSF
dwf(x, y; s, t) = 2

(
aDSF

dwf

)−1

x,y;s,t
= 2

(
Π+

1

aDdwf
Π+

)

x,y;s,t

. (3.31)

where inverse is defined in the sub-space H−

DSF
dwf

(
DSF

dwf

)−1
=

(
DSF

dwf

)−1
DSF

dwf = Π+. (3.32)

At tree level this propagator can be written in a simple form as

a3GSF
dwf(x, y; s, t) =

1

N3
L

∑

~p

ei~p(~x−~y)GSF
dwf(~p;x0, y0; s, t), (3.33)

GSF
dwf(~p;x0, y0; s, t) =

1

2aNT

NT∑

n=−NT +1

(
1

Ddwf(p)

)

s,t′

{(
eip0(x0−y0) + eip0(x0+y0)

) (
P+

)
t′,t

+
(
eip0(x0−y0) − eip0(x0+y0)

) (
P−

)
t′,t

}
, (3.34)

where the projection operator P± is defined in (3.20). The momentum pµ is multiplied by

lattice spacing implicitly and is dimensionless. The temporal momentum p0 satisfies the

quantization condition

p0 =
2n − 1

2NT
π, −NT + 1 ≤ n ≤ NT (3.35)
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for anti-periodicity in 2NT . Ddwf(p) is the domain-wall fermion Dirac operator in momen-

tum space without orbifolding projection

aDdwf(p) = iγµ sin pµ + W (p) − PLΩ+ − PRΩ−, (3.36)

W (p) = 1 − M +
∑

µ

(1 − cos pµ) . (3.37)

The explicit form of its inverse can be derived according to Ref. [30], which we defer to

appendix D.

The physical quark propagator is given by selecting the contribution from the boundary

fields in fifth direction

GSF
quark(x, y) = (PLδs,1 + PRδs,N5)GSF

dwf(x, y; s, t) (δt,N5PL + δt,1PR)

= 2 (Π−GquarkΠ+)x,y , (3.38)

where

a3Gquark(x, y) = (PLδs,1 + PRδs,N5)

(
1

aDdwf

)

x,y;s,t

(δt,N5PL + δt,1PR) (3.39)

is the physical quark propagator in 2NT × N3
L space-time without any projection. The

proper Dirichlet boundary conditions [10]

P+GSF
quark(x, y)|x0=0 = 0, P−GSF

quark(x, y)|x0=NT
= 0, (3.40)

GSF
quark(x, y)|y0=0P− = 0, GSF

quark(x, y)|y0=NT
P+ = 0 (3.41)

are satisfied for this quark propagator because of the projection Π±. By ignoring sub-

leading terms in e−N5 the propagator takes the following form at tree level

a3
∑

~x

e−i~p(~x−~y)GSF
quark(x, y) =

1

2NT

NT∑

n=−NT +1

(
iγµ sin pµ

1 − eαW (p)

)
eip0x0

×
{(

e−ip0y0 + eip0y0
)
P+ +

(
e−ip0y0 − eip0y0

)
P−

}
, (3.42)

which can be shown to approach to the continuum SF propagator of Ref. [10] without any

O(a) term. This system has no extra zero mode we encountered in naive formulation and

we conclude that this is equivalent to the QCD with SF boundary condition.

3.3 Renormalizability

In this sub-section we discuss renormalizability of the theory from a symmetry point of

view. As ordinary QCD the domain-wall fermion system has a symmetry under parity

ψ(x, s) → γ0Pstψ(−~x, x0, t), ψ(x, s) → ψ(−~x, x0, t)γ0Pts, (3.43)

and charge conjugation transformation

ψ(x, s) → CPstψ
T
(x, t), ψ(x, s) → ψT (x, t)Pts

(
−C−1

)
, C = γ2γ0, (3.44)
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where we need fifth dimensional parity transformation matrix P to compensate a variation

in extra degrees of freedom. The system also has a flavour symmetry and a chiral symmetry

(3.7) for massless case in the bulk 0 < x0 < NT , where chiral Ward-Takahashi identity of

Ref. [31] is satisfied.

Almost all the candidates for extra counter term, which are not included in the tree

level system, are ruled out by these symmetries. Here we should notice that this statement

is valid if we restrict ourselves to Green’s functions with the physical quark fields only. If

we consider a whole system including unphysical bulk fields it is shown that an extra term

appears in the effective action at one loop order [35]. However this is not a crucial problem

because a detailed form of the five dimensional action is not important. A point is that the

four dimensional QCD is defined by the physical quark field at fifth dimensional boundary.

When we treat Green’s functions with the physical quark field it was shown that quantum

correction is renormalized into the quark field, the quark mass and the physical operators

at one loop level [36, 37]. In this sense we consider counter terms which is written in terms

of the physical quark field only to survive in the physical Green’s function.

Now a candidate for an extra counter term is a mass like term qq and qγ0q at the

boundary, which is not forbidden by the chiral symmetry. However since the action (3.26)

is given by projecting onto a symmetric sub-space we have a symmetry under a “chiral”

orbifolding transformation

δ
(
Π+ψ

)
(x, s) = α

(
Π+ψ

)
(x, s), (3.45)

δ
(
ψ Π+

)
(x, s) = −α

(
ψ Π+

)
(x, s), (3.46)

where opposite degrees of freedom Π−ψ and ψ Π− are kept intact. Using the orbifolding

projection (3.17) it is easy to show that this transformation is a “chiral” transformation

only at the boundary

δ
(
P+ψ

)
(~x, 0, s) = α

(
P+ψ

)
(~x, 0, s), (3.47)

δ
(
ψ P+

)
(~x, 0, s) = −α

(
ψ P+

)
(~x, 0, s), (3.48)

δ
(
P−ψ

)
(~x,NT , s) = α

(
P−ψ

)
(~x,NT , s), (3.49)

δ
(
ψ P−

)
(~x,NT , s) = −α

(
ψ P−

)
(~x,NT , s) (3.50)

and is a vector U(1) transformation in the bulk 0 < x0 < NT

δψ(~x, x0, s) = αψ(~x, x0, s), δψ(~x, x0, s) = −αψ(~x, x0, s). (3.51)

In terms of the physical quark field the chiral orbifolding transformation is given by

δ (P−q(~x, 0)) = αP−q(~x, 0), δ (q(~x, 0)P+) = −αq(~x, 0)P+, (3.52)

δ (P+q(~x,NT )) = αP+q(~x,NT ), δ (q(~x,NT )P−) = −αq(~x,NT )P−. (3.53)

A mass like term qq and qγ0q is forbidden at the boundary by this chiral orbifolding

symmetry.

According to a similar discussion to that for chiral index (3.11) we can easily show

that orbifolding matrix A does not have an index and the orbifolding symmetry is not
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broken by anomaly. No extra counter term is needed to renormalize the orbifolded theory

with homogeneous boundary condition. Orbifolding symmetry under (3.45) (3.46) keeps

renormalizability. Boundary source fields are introduced to break orbifolding symmetry in

the next sub-section and renormalizability will be discussed again.

3.4 Surface term

In the orbifolding construction of the SF formalism only the homogeneous boundary con-

dition (3.24) (3.25) can be introduced. However in general SF formalism the Dirichlet

boundary condition is inhomogeneous as (1.3) and (1.4). The boundary values ρ, · · · , ρ′
are regarded as external source fields coupled to the dynamical fields and the correlation

functions involving the boundary fields

ζ(~x) =
δ

δρ(~x)
, ζ(~x) = − δ

δρ(~x)
, (3.54)

ζ ′(~x) =
δ

δρ′(~x)
, ζ

′
(~x) = − δ

δρ′(~x)
(3.55)

are used conveniently to extract the renormalization factors.

Couplings between the boundary source fields and the dynamical fields are not intro-

duced automatically in our formulation since the boundary value vanishes by projection.

The boundary source fields are elements of projected degrees of freedom Π−ψ and ψ Π−.

The surface term is given to connect the boundary source fields and the dynamical fields

Π+ψ, ψ Π+ and it is not consistent with the orbifolding symmetry (3.45) (3.46).

In this paper we define a surface term as an orbifolding symmetry breaking term,

which is consistent with other symmetries of the orbifolded domain-wall fermion; parity,

charge conjugation, flavor and chiral symmetry in the bulk. We notice that the orbifolding

symmetry becomes ordinary vector like U(1) symmetry (3.51) in the bulk, which should

not be broken. A reasonable way is to break it at the boundary, where the symmetry

becomes “chiral”. One of candidates is a physical quark mass term mfqq, which keeps

the bulk vector like U(1) symmetry. But this is forbidden by the chiral Ward-Takahashi

identity in the bulk. The symmetry should be broken only at the boundary.

We introduce boundary source fields as a component of projected out degrees of free-

dom in (3.18) and (3.19)

λ(~x, s) = P−ψ(~x, 0, s), λ′(~x, s) = P+ψ(~x,NT , s), (3.56)

λ(~x, s) =
(
ψ P−

)
(~x, 0, s), λ

′
(~x, s) =

(
ψ P+

)
(~x,NT , s) (3.57)

The orbifolding symmetry breaking term takes the form

Sbreaking = λ(~x, s)ÔstP+ψ(~x, 0, t) +
(
ψ P+

)
(~x, 0, s)Ôstλ(~x, t)

+λ
′
(~x, s)ÔstP−ψ(~x,NT , t) +

(
ψ P−

)
(~x,NT , s)Ôstλ

′(~x, t), (3.58)

where Ô is a local operator which anti-commute with Γ = γ0γ5PQ. Candidates of Ô are

γ0, γ5, Q, P and

K(u)st = (PLδs,N5+1−u + PRδs,u) (PLδt,u + PRδt,N5+1−u) , (3.59)

K̃(u)st = (PRδs,N5+1−u + PLδs,u) (PRδt,u + PLδt,N5+1−u) , (3.60)
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where summation over u is not taken. Among these candidates γ5 and Q are forbidden by

the parity symmetry. γ0 is not consistent with the charge conjugation. P , K(u) and K̃(u)

break chiral symmetry, which however is not a problem at the boundary. Since P , K(u)

and K̃(u) are consistent with parity and charge conjugation they are proper candidates of

orbifolding symmetry breaking term.

Here we remember a requirement for symmetry breaking term in the domain-wall

fermion. A whole five dimensional symmetry needs not to be broken since our ultimate

interest is a four dimensional chiral symmetric effective theory defined at the fifth dimen-

sional boundary. Only a four dimensional symmetry of the effective theory should be

broken. An example is the physical quark mass term. It is not the unique term which

breaks the chiral symmetry (3.7). Other terms like ψPψ, ψK(u)ψ and ψK̃(u)ψ also break

the chiral symmetry and are consistent with the parity and the charge conjugation. How-

ever we adopt only the physical quark mass term mfqq as the chiral symmetry breaking

term. This is because we are not interested in detailed form of the five dimensional action

and in terms of the effective theory the quark mass term is the only candidate to break

four dimensional chiral symmetry. 6

In this paper we restrict ourselves to physical quark operator for symmetry breaking

term. Now our task is to find dimension three physical quark operator which is consistent

with the parity and charge conjugation and breaks the orbifolding symmetry (3.52) (3.53).

The only candidate is the mass term qq and charge conjugation odd term qγ0q. We notice

that K(1) produces a physical quark mass term ψK(1)ψ = qq and the surface term is given

by

Ssurface = −a3
∑

~x

(
λ(~x, s)K(1)stP+ψ(~x, 0, t) +

(
ψ P+

)
(~x, 0, s)K(1)stλ(~x, t)

+λ
′
(~x, s)K(1)stP−ψ(~x,NT , t) +

(
ψ P−

)
(~x,NT , s)K(1)stλ

′(~x, t)
)

= a3
∑

~x

(
− ρ(~x)P−q(x)|x0=0 − q(x)P+ρ(~x)|x0=0

− ρ′(~x)P+q(x)
∣∣
x0=NT

− q(x)P−ρ′(~x)
∣∣
x0=NT

)
, (3.61)

where q and q are active dynamical fields at the temporal boundary. ρ and ρ are boundary

source fields for the physical quark fields

P+q(x)|x0=0 = ρ(~x), P−q(x)|x0=NT
= ρ′(~x), (3.62)

q(x)P−|x0=0 = ρ(~x), q(x)P+|x0=NT
= ρ′(~x). (3.63)

This surface term converge to that of the continuum theory in a → 0 limit.

Since this surface term is not a general orbifolding symmetry breaking term of domain-

wall fermion, general anticipation is that all sort of breaking terms will appear by quantum

6As was mentioned in the previous sub-section if we introduce the physical quark mass, other break-

ing terms like ψPψ appear in five dimensional action by quantum correction. However if we consider

Green’s functions constructed with the physical quark operators we can show that quantum corrections are

renormalized into the quark field, quark mass and the physical operators at one loop level [36].
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corrections in five dimensional theory. However our main concern is the four dimensional

effective theory defined through the physical quark fields and renormalizability should be

discussed in terms of the effective theory. According to our experience for the physical

quark mass term we may not need all the breaking terms to renormalize the physical

effective theory. This is because our surface term (3.61) is a general form of the orbifolding

symmetry breaking in the effective theory. The effective theory is realized by considering

Green functions constructed with physical quark operators only. We may expect that

quantum correction which appear in these Green functions is proportional to the original

surface term and can be renormalized into a shift of physical operators and physical quark

source fields ρ, ρ, ρ′ and ρ′. Explicit calculation is necessary to confirm this expectation.

We check validity of this surface term at tree level. According to Ref. [10] we introduce

the generating functional

ZF

[
ρ′, ρ′; ρ, ρ; η, η;U

]
=

∫
DψDψ exp

{
−SF

[
U,ψ, ψ; ρ′, ρ′, ρ, ρ

]

+a4
∑

x,s

(
ψ(x, s)η(x, s) + η(x, s)ψ(x, s)

)}
, (3.64)

where η(x) and η(x) are source fields for the fermion and the total action SF is given as

a sum of the bulk action (3.26) and the surface term (3.61). We notice that the fermion

fields ψ and ψ obey the orbifolding condition (3.17). The correlation functions between

the boundary fields are derived with the same procedure as Ref. [10].

〈
ψ(x, s)ψ(y, t)

〉
= GSF

dwf(x, y; s, t), (3.65)

〈q(x)q(y)〉 = GSF
quark(x, y), (3.66)

〈
q(x)ζ(~y)

〉
= GSF

quark(x, y)P+

∣∣
y0=0

(3.67)
〈
q(x)ζ

′
(~y)

〉
= GSF

quark(x, y)P−

∣∣
y0=NT

, (3.68)

〈ζ(~x)q(y)〉 = P− GSF
quark(x, y)

∣∣
x0=0

, (3.69)
〈
ζ ′(~x)q(y)

〉
= P+ GSF

quark(x, y)
∣∣
x0=NT

, (3.70)
〈
ζ(~x)ζ(~y)

〉
= P− GSF

quark(x, y)P+

∣∣
x0=0,y0=0

, (3.71)
〈
ζ(~x)ζ

′
(~y)

〉
= P− GSF

quark(x, y)P−

∣∣
x0=0,y0=NT

, (3.72)
〈
ζ ′(~x)ζ(~y)

〉
= P+ GSF

quark(x, y)P+

∣∣
x0=NT ,y0=0

, (3.73)
〈
ζ ′(~x)ζ

′
(~y)

〉
= P+ GSF

quark(x, y)P−

∣∣
x0=NT ,y0=NT

. (3.74)

The propagator GSF
dwf and GSF

quark are given in (3.31) and (3.38). We notice that the above

propagators between the boundary fields and physical quark fields approach to the contin-

uum SF boundary propagator without any O(a) term at tree level.

3.5 Effective action of the domain-wall fermion

In order to perform numerical simulation with dynamical fermion we need to introduce the

Pauli-Villars field to cancel bulk contribution in fifth direction. The Pauli-Villars field is a
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four component complex scalar and its action is given by

SPV = a4
∑

~x,~y

NT∑

x0,y0=−NT +1

N5∑

s,t=1

φ(x, s)DPV(x, y; s, t)φ(y, t), (3.75)

where Dirac operator for the Pauli-Villars field is given in the same form as the domain-wall

fermion Dirac operator (2.6) with mf = 1

DPV = Ddwf(mf = 1). (3.76)

This Dirac operator does not commute with the orbifolding operator A = γ0γ5PQR because

of the mass term. It is not straightforward to introduce the Pauli-Villars field by orbifolding.

In this paper we propose to implement it by the effective Dirac operator [34, 38].

The effective Dirac operator appears in an effective action of the physical quark field

(2.9) (2.10) and “physical” Pauli-Villars field

Q(x) = (PLδs,1 + PRδs,N5) φ(x, s), (3.77)

Q(x) = φ(x, s) (δs,N5PL + δs,1PR) . (3.78)

The effective action is given by integrating out all the bulk fields other than physical fields

at the fifth dimensional boundary [34]

Seff = a4
∑

[
q(x) (Deff)xy q(y) + Q(x)

(
Deff +

1

a

)

xy

Q(y)

]
. (3.79)

In its derivation the effective Dirac operator Deff is given as an inverse of the full physical

quark propagator

aDeff =
1

a3 〈qq〉 , (3.80)

whose explicit form is

aDeff =
1 + γ5S

1 − γ5S
, S =

1 − TN5

1 + TN5
, T =

1 − H ′

1 + H ′
, H ′ = γ5DW

1

2 + DW
. (3.81)

Here DW is a four dimensional Wilson Dirac operator with negative mass −2 < −M < 0.

In N5 → ∞ limit the Dirac operator becomes

aDeff =
1 + γ5ε

(
H̃

)

1 − γ5ε
(
H̃

) , T = e−
eH , (3.82)

where ε(x) is a sign function

ε(x) =
x√
x2

. (3.83)

We can easily check that this Dirac operator is exactly chiral symmetric

{γ5,Deff} = 0 (3.84)
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in N5 → ∞ limit and should be non-local to satisfy the Nielsen-Ninomiya’s no-go theorem.

The effective Dirac operator is related to the original domain-wall fermion and the

Pauli-Villars field Dirac operator through determinant

det
1

DPV
Ddwf = det

aDeff

aDeff + 1
= det aDN5 , (3.85)

where DN5 is a truncated overlap Dirac operator [34, 38]. Hereafter we take N5 → ∞ limit

implicitly and write DN5→∞ = DOD. In terms of the domain-wall fermion the overlap

Dirac operator is defined as

DOD =
Deff

aDeff + 1
. (3.86)

DOD satisfies the Ginsparg-Wilson relation [39] 7

{γ5,DOD} = 2aDODγ5DOD. (3.87)

If we introduce physical quark mass term we have a massive overlap Dirac operator through

determinant

DOD(mf ) =
Deff + mf

aDeff + 1
= DOD + mf (1 − aDOD) . (3.88)

The effective Dirac operator of the orbifolded domain-wall fermion system is defined

in a similar way. Since the four dimensional Wilson Dirac operator DW commute with the

four dimensional time reflection operator Σ = iγ5γ0R we have following anti-commutation

relations

{
Σ,H ′

}
= 0,

{
Σ, H̃

}
= 0. (3.89)

By using these relations we can easily show that the effective Dirac operator (3.82) anti-

commute with the four dimensional orbifolding operator Γ defined in (3.23)

{Γ,Deff} = 0. (3.90)

The massless overlap Dirac operator (3.86) satisfy “Ginsparg-Wilson relation” for the orb-

ifolding transformation [25]

{Γ,DOD} = 2aDODΓDOD. (3.91)

We define the Schrödinger functional effective Dirac operator as an inverse of the

orbifolded full quark propagator (3.38)

aDSF
eff = Π+

1

a3 〈qq〉Π− = Π+aDeffΠ−, (3.92)

7The Ginsparg-Wilson relation derived from a standard notation of the domain-wall fermion has a factor

two. This corresponds to a = 2a for the GW relation adopted in Ref. [25].
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where inverse means that in a sub-space

a4DSF
eff GSF

quark = 2Π+, a4GSF
quarkD

SF
eff = 2Π−. (3.93)

Contribution from the Pauli-Villars field is introduced to reproduce the Schrödinger func-

tional overlap Dirac operator defined in Ref. [25] 8

DSF
OD = Π+DeffΠ−

1

aDeff + 1
= Π+DODΠ̂−, (3.94)

where

Π̂± =
1 ± Γ̂

2
, Γ̂ = Γ (1 − 2aDOD) . (3.95)

This is not a unique definition of the SF overlap Dirac operator but we can define

another Dirac operator as

D
SF
OD =

1

aDeff + 1
Π+DeffΠ−. (3.96)

These two Dirac operators are related by unitary operators

u =
1 + Σ

2
(1 − 2aDOD) +

1 − Σ

2
, u′ = γ5uγ5 (3.97)

as

uDSF
ODu† = D

SF
OD, u′†DSF

ODu′ = D
SF
OD. (3.98)

Here we used a fact that the effective and the overlap Dirac operators commute with the

four dimensional time reflection operator Σ.

As was discussed in Ref. [25] the SF overlap Dirac operator does not have γ5 Hermiticity

relation. Instead we have

(
DSF

OD

)†
= γ5D

SF
ODγ5. (3.99)

In order to define real fermion determinant we may need even numbers of flavours and

different Dirac operators for each flavours. An example for two flavours case is

D
(2)
SF =

(
DSF

OD

D
SF
OD

)
. (3.100)

We notice that U(2) vector flavour symmetry is broken to U(1) × U(1). Determinant of

this Dirac operator is

det aD
(2)
SF = det aD

(2)
SFγ5 = det

H−

(
Π+aDeff

1

aDeff + 1

1

aD†
eff + 1

aD†
effΠ+

)
, (3.101)

8The Ginsparg-Wilson relation (3.91) in this paper corresponds to a = 2a in Ref. [25] and so is the

definition of bΓ.
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which is re-written in terms of pseudo-fermion field χ

det aD
(2)
SF =

∫
D

(
Π+χ†

)
D (Π+χ) exp

(
−χ†Π+

(
1

aD†
eff

+ 1

) (
1

aDeff
+ 1

)
Π+χ

)
.

(3.102)

The determinant is defined in a sub-space H− = {ψ|Π−ψ = 0} of eigenfunctions. In eval-

uation of the fermion force we need to calculate

(
1

aDeff
+ 1

)−1

=
(
a3 〈qq〉 + 1

)−1
, (3.103)

which corresponds to inverse of the overlap Dirac operator.

The orbifolded effective Dirac operator is modified as follows when we introduce the

mass term (3.29)

DSF
eff (mf ) =

1

2
Π+ (Deff + mfη) Π−. (3.104)

Taking into account a contribution from the Pauli-Villars Dirac operator the massive SF

overlap Dirac operator is defined as

DSF
OD(mf ) =

1

2
Π+ (Deff + mfη)Π−

1

aDeff + 1
=

1

2
Π+ (DOD + mfη (1 − aDOD)) Π̂−,

(3.105)

D
SF
OD(mf ) =

1

2

1

aDeff + 1
Π+ (Deff + mfη) Π−. (3.106)

Although we do not have a unitary transformation to relate DSF
OD(mf ) and D

SF
OD(mf ) we

have a Hermiticity relation

(
DSF

OD(mf )
)†

= γ5D
SF
OD(mf )γ5. (3.107)

We also need even numbers of flavours to define a real fermion determinant.

4. Schrödinger functional with twisted boundary condition

In the previous section we presented an orbifolding formulation of domain-wall fermion in

finite box, in which the homogeneous proper boundary condition (3.24) (3.25) is satisfied.

This is a solution of our purpose to define a finite volume renormalization scheme. However

this may not be the unique solution of our requirement that the theory has a mass gap and

is kept to be renormalizable in a finite box. In this section we propose another orbifolding

formulation to adopt chirally twisted boundary condition [25, 40]. As was discussed in

Ref. [25] the chirally twisted boundary condition has advantages that the fermion deter-

minant becomes real and the mass term is introduced easier. For domain-wall fermion the

Pauli-Villars field can be treated in a straightforward way by orbifolding.
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4.1 Orbifolding construction of chirally twisted boundary condition

In this section we adopt two flavours case for instance since the fermion determinant be-

comes real for even numbers of flavours as will be discussed later. We start from the

massless orbifolded action (3.26) and introduce the twisted orbifolding by chirally rotating

the fermion field

ψ = ei π

4
Qτ3

ψ′, ψ = ψ
′
e−i π

4
Qτ3

, (4.1)

where τ3 is the Pauli matrix to act on flavour space and Q is the vector charge (3.8) for

chiral transformation. In terms of the rotated field the orbifolded action is given by

SSF = a4
∑ 1

2
ψ
′
D̃SF

dwfψ
′, D̃SF

dwf = Π̃−Ddwf Π̃−, (4.2)

where

Π̃± =
1 ± Στ3

2
(4.3)

is a twisted orbifolding projection with time reflection operator Σ defined in (3.1).

As was discussed in sub-section 3.1 the Dirac operator has no index and the chiral

transformation is not anomalous even for Abelian case. This formulation with twisted

orbifolding projection is equivalent to the original one for massless theory. Hereafter we

regard that a new orbifolded theory is defined by a projection (4.3) and drop prime from

the chirally rotated fermion field for simplicity. We notice that the twisted orbifolding

operator Στ3 commute with the massive domain-wall fermion Dirac operator

[
Στ3,Ddwf(mf )

]
= 0 (4.4)

since we adopted time reflection invariant gauge configuration. We can extend this twisted

formulation to massive theory

Stwist
dwf = a4

∑ 1

2
ψD̃SF

dwf(mf )ψ, D̃SF
dwf = Π̃−Ddwf(mf )Π̃−. (4.5)

It is straightforward to introduce the Pauli-Villars field through orbifolding

Stwist
PV = a4

∑ 1

2
φD̃SF

PVφ, D̃SF
PV = Π̃−DPVΠ̃− (4.6)

since DPV = Ddwf(mf = 1) and is commutable with the orbifolding operator.

The fermion fields satisfy the twisted orbifolding projection condition in this action

Π̃+ψ = 0, ψΠ̃+ = 0, (4.7)

which brings the following boundary conditions

P̃+ψ(~x, 0, s) = 0, P̃−ψ(~x,NT , s) = 0, (4.8)(
ψ P̃+

)
(~x, 0, s) = 0,

(
ψ P̃−

)
(~x,NT , s) = 0 (4.9)
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with projection operator

P̃± =
1 ± iγ5γ0Pτ3

2
. (4.10)

In terms of the physical quark field the projection condition becomes

(PLδs,1 + PRδs,N5)
(
Π̃+

)
s,t

ψ(x, t) = Π̃+q(x) = 0, (4.11)

ψ(x, t)
(
Π̃+

)
t,s

(δs,N5PL + δs,1PR) = q(x)Π̃+ = 0, (4.12)

Π̃± =
1 ± Στ3

2
, Σ = iγ5γ0R, (4.13)

where Σ is the time reflection operator in four dimensions. The boundary condition for

the physical quark field is

P̃+q(x)|x0=0 = 0, P̃−q(x)|x0=NT
= 0, (4.14)

q(x)P̃+|x0=0 = 0, q(x)P̃−|x0=NT
= 0, (4.15)

P̃± =
1 ± iγ5γ0τ

3

2
. (4.16)

We have two comments. The orbifolded Dirac operator with twisted projection has a

following Hermiticity relation

D̃SF(m)† = γ5τ
1,2D̃SF(m)γ5τ

1,2, (4.17)

which is also the same for the orbifolded Pauli-Villars Dirac operator. The U(2) flavour

symmetry is broken to U(1)V × U(1)3 as in the chirally twisted mass QCD.

4.2 Free propagator

The original theory before orbifolding has a mass gap proportional to 1/T because of anti-

periodicity in temporal direction. This property is robust against orbifolding process and

survive in the twisted orbifolding formulation. We will check this property at tree level by

using propagator.

The fermion propagator is defined as an inverse of the orbifolded Dirac operator in a

sub-space

a3G̃SF
dwf(x, y; s, t) = 2

(
aD̃SF

dwf

)−1

x,y;s,t
= 2

(
Π̃−

1

aDdwf
Π̃−

)

x,y;s,t

, (4.18)

D̃SF
dwf

(
D̃SF

dwf

)−1
=

(
D̃SF

dwf

)−1
D̃SF

dwf = Π̃−. (4.19)

At tree level this propagator can be written in a simple form as

a3G̃SF
dwf(x, y; s, t) =

1

N3
L

∑

~p

ei~p(~x−~y)G̃SF
dwf(~p;x0, y0; s, t), (4.20)

G̃SF
dwf(~p;x0, y0; s, t) =

1

2aNT

NT∑

n=−NT +1

(
1

Ddwf(p)

)

s,t′

{(
eip0(x0−y0) − eip0(x0+y0)

) (
P̃+

)
t′,t

+
(
eip0(x0−y0) + eip0(x0+y0)

) (
P̃−

)
t′,t

}
. (4.21)
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Ddwf(p) is the domain-wall fermion Dirac operator in momentum space without orbifolding

projection, whose inverse is given in appendix D. We notice that the temporal momentum

p0 satisfies the quantization condition (3.35) and there is no extra fermion zero mode.

The physical quark propagator is given by selecting the contribution from the boundary

fields in fifth direction

G̃SF
quark(x, y) = (PLδs,1 + PRδs,N5) G̃SF

dwf(x, y; s, t) (δt,N5PL + δt,1PR)

= 2
(
Π̃−GquarkΠ̃−

)
x,y

, (4.22)

where Gquark(x, y) is the physical quark propagator in 2NT × N3
L space-time without any

projection. Following Dirichlet boundary conditions

P̃+GSF
quark(x, y)|x0=0 = 0, P̃−GSF

quark(x, y)|x0=NT
= 0, (4.23)

GSF
quark(x, y)|y0=0P̃+ = 0, GSF

quark(x, y)|y0=NT
P̃− = 0 (4.24)

are satisfied for this quark propagator. By ignoring sub-leading terms in e−N5 the propa-

gator takes the following form at tree level

a3
∑

~x

e−i~p(~x−~y)GSF
quark(x, y) =

1

2NT

NT∑

n=−NT +1

(
iγµ sin pµ

1 − eαW (p)

)
eip0x0

×
{(

e−ip0y0 − eip0y0
)
P̃+ +

(
e−ip0y0 + eip0y0

)
P̃−

}
.(4.25)

We emphasize that the physical quark has a gap (3.35) proportional to 1/T because of the

anti-periodicity. This formulation satisfies one of the requirement.

4.3 Surface term

In this subsection we consider a twisted orbifolding symmetry and introduce a coupling

to the boundary source field (surface term) as a symmetry breaking term. The orbifolded

action (4.5) is invariant under the following twisted orbifolding transformation

δ
(
Π̃−ψ

)
(x, s) = α

(
Π̃−ψ

)
(x, s), δ

(
ψΠ̃−

)
(x, s) = −α

(
ψΠ̃−

)
(x, s), (4.26)

where remaining degrees of freedom Π̃+ψ and ψΠ̃+ are kept intact. The boundary source

fields are elements of Π̃+ψ and ψΠ̃+.

We define a surface term as an orbifolding symmetry breaking term, which is consistent

with parity

ψ(x, s) → γ0Pstτ
1,2ψ(−~x, x0, t), ψ(x, s) → ψ(−~x, x0, t)γ0Ptsτ

1,2, (4.27)

charge conjugation

ψ(x, s) → CPstτ
1,2ψ

T
(x, t), ψ(x, s) → ψT (x, t)

(
−C−1

)
Ptsτ

1,2, C = γ2γ0 (4.28)

and

ψ(x, s) → C(PQ)stψ
T
(x, t), ψ(x, s) → ψT (x, t)

(
−C−1

)
(PQ)ts, C = γ2γ0 (4.29)
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and vector U(1)3 symmetry

δψ(x, s) = βτ3ψ(x, s), δψ(x, s) = −βψ(x, s)τ3. (4.30)

of the orbifolded domain-wall fermion. Here we modified the parity and the charge conju-

gation transformation to be consistent with the twisted orbifolding projection.

Using the orbifolding projection (4.7) the orbifolding transformation (4.26) is shown

to be a “chiral” transformation at the boundary in which a half of degrees is rotated

δ
(
P̃−ψ

)
(~x, 0, s) = α

(
P̃−ψ

)
(~x, 0, s), (4.31)

δ
(
ψP̃−

)
(~x, 0, s) = −α

(
ψP̃−

)
(~x, 0, s), (4.32)

δ
(
P̃+ψ

)
(~x,NT , s) = α

(
P̃+ψ

)
(~x,NT , s), (4.33)

δ
(
ψP̃+

)
(~x,NT , s) = −α

(
ψP̃+

)
(~x,NT , s) (4.34)

and is a vector U(1) transformation in the bulk 0 < x0 < NT

δψ(~x, x0, s) = αψ(~x, x0, s), δψ(~x, x0, s) = −αψ(~x, x0, s). (4.35)

The symmetry should be broken only at the boundary.

We introduce boundary source fields as a component of projected out degrees of free-

dom

λ(~x, s) = P̃+ψ(~x, 0, s), λ′(~x, s) = P̃−ψ(~x,NT , s), (4.36)

λ(~x, s) =
(
ψ P̃+

)
(~x, 0, s), λ

′
(~x, s) =

(
ψ P̃−

)
(~x,NT , s). (4.37)

The orbifolding symmetry breaking term takes the form

Sbreaking = λ(~x, s)ÕstP̃−ψ(~x, 0, t) +
(
ψ P̃−

)
(~x, 0, s)Õstλ(~x, t)

+λ
′
(~x, s)ÕstP̃+ψ(~x,NT , t) +

(
ψ P̃+

)
(~x,NT , s)Õstλ

′(~x, t), (4.38)

where Õ is a local operator which anti-commute with iγ5γ0Pτ3. Candidates of Õ which is

consistent with the parity, charge conjugation and U(1)3 symmetries are PQτ3, K(u)Qτ3

and K̃(u)Qτ3, where K and K̃ are defined in (3.59) (3.60).

As in the previous section we restrict ourselves to the physical quark field for symmetry

breaking term and adopt K(1)Q for the surface term

Ssurface = −a3
∑

~x

(
λ(~x, s)(K(1)Q)stτ

3P̃−ψ(~x, 0, t) +
(
ψ P̃−

)
(~x, 0, s)(K(1)Q)stτ

3λ(~x, t)

+λ
′
(~x, s)(K(1)Q)stτ

3P̃+ψ(~x,NT , t) +
(
ψ P̃+

)
(~x,NT , s)(K(1)Q)stτ

3λ′(~x, t)
)

= a3
∑

~x

(
− ρ(~x)γ5τ

3P̃−q(x)
∣∣∣
x0=0

− q(x)P̃−γ5τ
3ρ(~x)

∣∣∣
x0=0

− ρ′(~x)γ5τ
3P̃+q(x)

∣∣∣
x0=NT

− q(x)P̃+γ5τ
3ρ′(~x)

∣∣∣
x0=NT

)
. (4.39)
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ρ and ρ are boundary source fields for the physical quark fields

P̃+q(x)|x0=0 = ρ(~x), P̃−q(x)|x0=NT
= ρ′(~x), (4.40)

q(x)P̃+|x0=0 = ρ(~x), q(x)P̃−|x0=NT
= ρ′(~x). (4.41)

Although this surface term is not a general symmetry breaking term, we also expect

that quantum corrections can be renormalized into a shift of physical operators and physical

quark source fields ρ, ρ, ρ′ and ρ′ if we consider Green functions constructed with physical

quark operators only.

4.4 Effective action of the domain-wall fermion

For the twisted orbifolding formulation of finite volume field theory the Pauli-Villars field

is introduced directly as in (4.6). Total contributions from fermion and Pauli-Villars field

is

det
eH+

Π̃−
1

DPV
Ddwf(mf )Π̃−, (4.42)

where the determinant is defined in a sub-space H̃+ =
{
ψ|Π̃+ψ = 0

}
of eigenfunctions.

In this sub-section we will show that this determinant is equivalent to that of the overlap

Dirac operator with twisted orbifolding [25]

det
eH+

Π̃−
1

DPV
Ddwf(mf )Π̃− = det

eH+

Π̃−aDOD(mf )Π̃−. (4.43)

For this purpose we adopt the Schur decomposition procedure for the effective Dirac

operator [41, 42]. Statement of the Schur decomposition is that the overlap Dirac operator

is given as a Schur complement of the domain-wall fermion Dirac operator divided by the

Pauli-Villars Dirac operator

1

DPV
Ddwf(mf ) = PU−1(1)D

(5)
OD(mf )U(amf )P†. (4.44)

Here P, U(amf ) and D
(5)
OD(mf ) are matrices in fifth dimension and their explicit forms for

N5 = 6 case are given by

P =




PR PL

PL PR

PL PR

PL PR

PL PR

PL PR




= PR + Ω−(−1)PL, (4.45)

U(amf ) =




1 −T (PL − amfPR)

1 −T 2 (PL − amfPR)

1 −T 3 (PL − amfPR)

1 −T 4 (PL − amfPR)

1 −T 5 (PL − amfPR)

1




, (4.46)
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D
(5)
OD(mf ) =




1

1

1

1

1

aDOD(mf )




, (4.47)

where DOD(mf ) is a truncated four dimensional massive overlap Dirac operator

aDOD(mf ) =
1

2
(1 + γ5S) + amf

(
1 − 1

2
(1 + γ5S)

)
(4.48)

with the same definition for S in (3.81). The truncated Dirac operator turns out to be the

ordinary overlap Dirac operator (3.88) in N5 → ∞ limit. Ω−(mf ) is a hopping operator in

fifth direction (2.8). So we have

det
1

DPV
Ddwf(mf ) = det aDOD(mf ) (4.49)

for ordinary domain-wall fermion system.

We start from the orbifolded domain-wall fermion Dirac operator divided by the Pauli-

Villars Dirac operator

D
(5)
SF = Π̃−

1

DPV
Ddwf(mf )Π̃− = Π̃−PU−1(1)D

(5)
OD(mf )U(mf )P†Π̃−. (4.50)

We consider multiplication of the projection operator on unitary matrix P and we have

Π̃−P = Π̃−PΠ̂−, Π̂± =
1 ± PΩ−(−1)Στ3

2
. (4.51)

We notice that a matrix in the projection Π̂± has a following form

PΩ−(−1) = Ω+(−1)P =

(
P(N5−1) 0

0 1

)
, (4.52)

where P(N5−1) is a (N5 − 1) × (N5 − 1) matrix of the form

P(N5−1) =




0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0




, (N5 = 6). (4.53)

The projection operator Π̂± is written as a direct sum of two projections

Π̂± =

(
Π̃

(N5−1)

±

Π̃±

)
, (4.54)
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where

Π̃
(N5−1)

± =
1 ± P(N5−1)Στ3

2
(4.55)

is a projection operator in N5 − 1 sub-space.

Taking into account the explicit form of the matrix U(mf ) its determinant multiplied

by the projection becomes

det
(+subspace)

U(m)Π̂− = det
(+subspace)

Π̂−U(m)Π̂− = det
(+subspace)

(
Π̃

(N5−1)

−

Π̃−

)
= 1, (4.56)

det
(+subspace)

Π̂−U−1(m) = det
(+subspace)

Π̂−U−1(m)Π̂− = det
(+subspace)

(
Π̃

(N5−1)

−

Π̃−

)
= 1.

(4.57)

Substituting this relation determinant of the total Dirac operator is equivalent to that of

the orbifolded overlap Dirac operator

det
eH+

D
(5)
SF = det

eH+

Π̃−PΠ̂−U−1(1)Π̂−D
(5)
OD(mf )Π̂−U(mf )Π̂−P†Π̃−

= det
(+subspace)

(
Π̂−D

(5)
OD(mf )Π̂−

)

= det
(+subspace)

(
Π̃

(N5−1)

−

Π̃−

)(
1(N5−1)

aDOD(mf )

) (
Π̃

(N5−1)

−

Π̃−

)

= det
eH+

Π̃−aDOD(mf )Π̃− (4.58)

and we get expected result.

At last we have a comment on Hermiticity. The five dimensional total Dirac operator

D
(5)
SF has a following Hermiticity relation

D
(5)
SF

†
= γ5τ

1,2D
(5)
SFγ5τ

1,2 (4.59)

and its determinant is real. Since our domain-wall fermion Dirac operator does not have

index the chiral rotation (4.1) is well defined even for single flavour case and we can define

a single flavour orbifolded Dirac operator as

Dsingle
SF =

1 − Σ

2

1

DPV
Ddwf(mf )

1 − Σ

2
. (4.60)

However we do not have a Hermiticity relation for this Dirac operator and the determinant

is not shown to be real. We may need even numbers of flavours to avoid this problem.

5. Conclusion

In this paper the orbifolding formulation of the finite volume field theory is applied to the

domain-wall fermion. In order to reproduce the proper SF Dirichlet boundary condition
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we need both the time reflection and the chiral symmetries. Application of this procedure

to fermionic part is straightforward because of good chiral symmetry of the domain-wall

fermion. Since there is no chiral symmetry for the Pauli-Villars field it is introduced by

using the effective Dirac operator to reproduce the SF overlap Dirac operator. The surface

term is given as an external source field to break the orbifolding symmetry.

The SF Dirichlet boundary condition may not be the unique choice to define a finite

volume field theory suitable for renormalization scheme. A finite volume field theory with

chirally twisted boundary condition is also proposed. Time reflection symmetry is enough

to reproduce the twisted boundary condition by orbifolding. We can treat the fermionic

part and the Pauli-Villars field in an equal footing. We have a γ5 Hermiticity relation

for the orbifolded Dirac operator and the total determinant is real. This formulation is

applicable to two flavours dynamical simulation.

A. Effective action of chiral symmetric Dirac operator

In this appendix we derive the effective Dirac operator of the physical quark field for an

action with the chiral symmetric Dirac operator (3.12). Four dimensional part of the

symmetric Dirac operator is the same as the ordinary Dirac operator (2.6). Hopping term

of this Dirac operator into the fifth direction takes the form

PLΩ+(mf = 0) + PRΩ−(mf = 0) =




0 PL 0 0 0 0

PR 0 PL 0 0 0

0 PR 0 0 0 0

0 0 0 0 PL 0

0 0 0 PR 0 PL

0 0 0 0 PR 0




(A.1)

for massless case. If there were no quark mass this Dirac operator is equivalent to two

independent domain-wall fermion with half fifth dimensional size of N5/2. It is easily

shown that there are two extra zero mode (doublers) at the middle boundary s = N5
2 and

s = N5
2 + 1 related to the exact chiral symmetry at finite N5.

The physical quark fields may be defined in the same manner as (2.9) and (2.10). We

can integrate out the bulk field other than q and q according to Ref. [34, 38, 41]. We start

by writing the fermion field as a vector in fifth direction and chirality. For N5 = 6 we have

ΨT = ( ψ1R ψ1L ψ2R ψ2L ψ3R ψ3L ψ4R ψ4L ψ5R ψ5L ψ6R ψ6L ) ,

Ψ = ( ψ1L ψ1R ψ2L ψ2R ψ3L ψ3R ψ4L ψ4R ψ5L ψ5R ψ6L ψ6R ) ,

where

ψR/L = PR/Lψ, ψR/L = ψPL/R. (A.2)

Then we change variable as

Ψ
′T = ( ψ1L ψ1R ψ2L ψ2R ψ3L ψ3R ψ4L ψ4R ψ5L ψ5R ψ6L ψ6R ) ,

Ψ
′
= ( ψ1R ψ2L ψ2R ψ3L ψ3R ψ1L ψ4R ψ5L ψ5R ψ6L ψ6R ψ4L ) .
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The Dirac operator is written as follows in terms of the primed field

aDdwf =




α β

α β

β0 α0

α β

α β

β0 α0




, (A.3)

where

α =

(
B −C†

−1

)
, α0 = PRα, (A.4)

β =

(−1

C B

)
, β0 = PLβ, (A.5)

Cxy = σµ
1

2

(
δx+µ,yUµ(x) − δx−µ,yU

†
µ(y)

)
, (A.6)

Bxy = (1 − M)δxy − 1

2

(
δx+µ,yUµ(x) + δx−µ,yU

†
µ(y) − 2δxy

)
, (A.7)

γµ =

(
σµ

σ†
µ

)
. (A.8)

We integrate out all the fields except for the physical quark field

q(x) = PLψ(x, 1) + PRψ(x,N5) = PLγ0ψ
′(x, 1) + PRγ0ψ

′(x,N5), (A.9)

q(x) = ψ(x, 1)PR + ψ(x,N5)PL = ψ
′
(x,

N5

2
)γ0PR + ψ

′
(x,N5)γ0PL (A.10)

according to Ref. [34]. Result is given as a full quark propagator

a3 〈qq〉 =
1

2

(
1

aDeff
− γ5

1

aDeff
γ5

)
=

1

aDsym
eff

. (A.11)

Here Deff is the truncated effective Dirac operator (3.81) with half size of fifth dimensional

length

aDeff =
1 + γ5S

1 − γ5S
, S =

1 − T
N5
2

1 + T
N5
2

. (A.12)

Transfer matrix is given by

T = γ5γ0

(
−αβ−1

)
γ0γ5 =

1 − H ′

1 + H ′
(A.13)

with H ′ defined in (3.81). The full quark propagator anti-commutes with γ5 even at finite

N5. In N5 → ∞ limit the effective Dirac operator Deff anti-commutes with γ5 exactly and

the effective Dirac operator Dsym
eff with symmetric construction becomes the same as that

of the ordinary domain-wall fermion Deff .

We introduce the Pauli-Villars field in the same manner with the Dirac operator

Dsym
PV = Ddwf(mf = 1) + X. (A.14)
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The effective action of the physical quark field q, q and the physical Pauli-Villars field Q,

Q is given by

Seff = a4
∑[

qDsym
eff q + Q

(
Dsym

eff +
1

a

)
Q

]
. (A.15)

The overlap Dirac operator is given to reproduce the same determinant as the effective

action

Dsym
OD =

Dsym
eff

aDsym
eff + 1

. (A.16)

Because of exact chiral symmetry of Dsym
eff the overlap Dirac operator Dsym

OD satisfies the

Ginsparg-Wilson relation even at finite N5.

Compensation of the exact chirality at finite N5 is a non-locality in the overlap Dirac

operator, which comes from the extra zero mode in the middle of fifth direction. However

we can show that the non-locality is exponentially small in N5 and disappears in N5 → ∞
limit. In order to extract the non-locality we define explicit breaking term of the chiral

symmetry of the ordinary effective Dirac operator (3.81) or the truncated overlap Dirac

operator at finite N5

δN5 = γ5
1

Deff(N5)
+

1

Deff(N5)
γ5 = γ5

1

DOD(N5)
+

1

DOD(N5)
γ5 − 2aγ5. (A.17)

The chiral symmetric effective Dirac operator is re-written as

1

Dsym
eff

=
1

Deff
− 1

2
γ5δN5

2

, (A.18)

where we used a fact that the breaking term commutes with γ5

[δN5 , γ5] = 0. (A.19)

The chiral symmetric overlap Dirac operator is given in a following form

Dsym
OD =

1

1 − 1
2DODγ5δN5

2

DOD. (A.20)

DOD in denominator may bring a non-local factor into the overlap Dirac operator. However

as was shown in Ref. [34] δN5 is exponentially small in N5. The physical part of the chiral

symmetric Dirac operator Dsym
dwf coincides with that of the ordinary Dirac operator in

N5 → ∞ limit.

B. Effect of explicit breaking term at finite N5

An effect of the explicit chiral symmetry breaking on the orbifolding procedure at finite

N5 will be discussed in this appendix. The chiral symmetry breaking in the domain-wall

fermion is given as a non-invariant part of the Dirac operator (3.9). The same sort of
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breaking term appears for the orbifolding symmetry since it includes the chiral transfor-

mation

[A,Ddwf ] = −2AX. (B.1)

The projection operator Π± plays an essential role in the orbifolding construction of the

SF. A key property A2 = 1 remains intact at finite N5 and Π± keeps a projection property.

An orbifolding symmetry breaking effect appears as a mixing between two different Hilbert

sub-spaces H±

Π+DdwfΠ− = −Π+XΠ−, (B.2)

Π−DdwfΠ+ = −Π−XΠ+. (B.3)

We can define the same theory (3.26) projecting out the sub-space H+ by (3.17). But a

discussion of renormalizability in sub-section 3.3 is not valid anymore. A field belonging to

H+ will be introduced by quantum correction through the mixing. We may need additive

counter term to keep the projection condition (3.17) and the action (3.26).

However as was shown in Ref. [31] an effect of the chiral symmetry breaking term is

suppressed exponentially in a Green’s function with physical quark operator
〈(

ψXψ
)
O(q, q)

〉
< e−CN5 , (B.4)

where C is a constant related to a gap of the four dimensional Wilson Dirac operator DW .

Since the orbifolding symmetry breaking term is proportional to X a quantum correction

from the mixing term is also suppressed exponentially in a physical Green’s function and

would be no harm in large N5 limit.

An inverse of the orbifolded Dirac operator should be modified if we take into account

an effect of the explicit breaking term X. We define an inverse of the orbifolded Dirac

operator DSF
dwf in the sub-space (3.32). By making use of the relation (B.1) one can show

that the inverse in exact sense is given by

(
DSF

dwf

)−1
= Π+

1

Ddwf + X
Π+. (B.5)

The Dirac operator Ddwf +X is nothing but the chiral symmetric Dirac operator (3.12) and

is equivalent to two independent domain-wall fermion with half fifth dimensional size for

massless case. Its inverse is given as a direct sum of two independent domain-wall fermion

Dirac operator of half size
(

1

Ddwf + X

)

st

=

((
D−1

dwf(
N5
2 )

)
0

0
(
D−1

dwf(
N5
2 )

)
)

(B.6)

where upper row corresponds to 1 ≤ s, t ≤ N5
2 and lower row to N5

2 + 1 ≤ s, t ≤ N5. Tree

level propagator is given by replacing N5 → N5/2 in appendix D for each row. The physical

quark propagator is given in the same manner

〈q(p)q(−p)〉 = (PLδs,1 + PRδs,N5)

(
1

Ddwf(p) + X

)

s,t

(δt,N5PL + δt,1PR) . (B.7)

A difference from the ordinary quark propagator (D.12) is O(e−αN5) at tree level. The

orbifolded propagator is given by replacing Ddwf → Ddwf + X in sub-section 3.2.
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C. Folding of temporal direction

In our formulation with the orbifolding (3.17) fermion fields in negative time −NT < x0 < 0

can be written in term of those in the positive region

ψ(~x,−x0, s) =
(
Γ
)
s,t

ψ(~x, x0, t), Γ = γ0γ5PQ. (C.1)

Half of the field degrees of freedom can be eliminated explicitly by folding the temporal

axis into the non-negative range 0 ≤ x0 ≤ NT together with the boundary condition (3.18)

(3.19).

For this purpose we introduce four projection operators in temporal direction

T− for −NT + 1 ≤ x0 ≤ −1,

T0 for x0 = 0,

T+ for 1 ≤ x0 ≤ NT − 1,

TT for x0 = NT ,

which pick up the fermion fields on the corresponding region. For instance

(T+)x0,y0
ψ(y0) =

{
ψ(x0) for 1 ≤ x0 ≤ NT − 1

0 otherwise
. (C.2)

Summing up four projection operators we have a unity

1 = T− + T0 + T+ + TT (C.3)

and Tα’s have a projection property

TαTβ = Tαδα,β, (C.4)

where summation is not taken over α. These projection operators satisfy the following

relation with the time reflection operator R

RT+ = T−R, RT− = T+R, RT0 = T0R = T0, RTT = TT R = −TT . (C.5)

By using these properties we have an identity relation

Π+ = Π+ (T+ + T− + T0 + TT )

= Π+ (T+ + T0 + TT ) (2T+ + T0 + TT ) Π+ (C.6)

and the orbifolded action (3.26) can be re-written in terms of the fermion fields depending

on the non-negative region only

S = a4
∑

~x,~y

NT∑

x0,y0=0

∑

s,t

ψ
′′
(x, s)Dfolded

dwf (x, y; s, t)ψ′′(y, t), (C.7)

where ψ′′ and ψ
′′

are defined as

ψ′′(~x, x0, s) =
(
(T+ + T0 + TT ) Π+

)
x0,y0;s,t

ψ(~x, y0, t), (C.8)

ψ
′′
(~x, x0, s) = ψ(~x, y0, t)

(
Π+ (T+ + T0 + TT )

)
y0,x0;t,s

, (C.9)
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which have no dependence on negative time. These fields can further be written as

ψ′′(~x, x0, s) =
(
T+ + T0P+ + TT P−

)
x0,y0;s,t

ψ(~x, y0, t), (C.10)

ψ
′′
(~x, x0, s) = ψ(~x, y0, t)

(
T+ + P+T0 + P−TT

)
y0,x0;t,s

(C.11)

by using (C.5) and identification (C.1). There is no constraint on positive bulk fields.

The folded Dirac operator Dfolded
dwf is given formally as

Dfolded
dwf =

1

2
(2T+ + T0 + TT )Π+DdwfΠ+ (2T+ + T0 + TT ) . (C.12)

This Dirac operator can be written in more explicit form by using the orbifolding symmetry

(3.16) and the ultra local property of the domain-wall fermion Dirac operator, with which

we eliminate the term like T+DdwfAT+ = T+DdwfT−A

aDfolded
dwf =

1

2
T0P+aDdwfP+T0 + T0P+aDdwfT+ + T+aDdwfP+T0 + T+aDdwfT+

+TT P−aDdwfT+ + T+aDdwfP−TT +
1

2
TT P−aDdwfP−TT (C.13)

=




P+
D(3+1)

2 P+ −P+P−U0(0)

−P+P+U †
0(0) D(3+1) −P−U0(1)

−P+U †
0 (1) D(3+1) −P−U0(2)

−P+U †
0 (2) D(3+1) −P−P−U0(3)

−P−P+U †
0(3) P−

D(3+1)

2 P−




(C.14)

where the matrix represents the Dirac operator in temporal direction for NT = 4. D(3+1)

is the Dirac operator in spatial direction and the fifth direction

D(3+1)(x, y; s, t) =

(−1 + γi

2
Ui(x)δyi,xi+1 +

−1 − γi

2
U †

i (y)δyi,xi−1

)
δx0,y0δs,t

+

(−1 + γ5

2
Ω+

s,t +
−1 − γ5

2
Ω−

s,t

)
δx,y + (5 − M)δx,yδs,t. (C.15)

There is no constraint for the bulk region 1 < x0, y0 < NT − 1, which is nothing but

ordinary domain-wall fermion Dirac operator.

We notice that the projection operator P± at the boundary does not commute with

the γ0 chiral projection P±. If we consider an eigenvalue equation of this Dirac operator a

zero mode dumping solution

ψ = P−(1 − M)x0 + P+(1 − M)(NT −x0) (C.16)

in temporal direction, which have broken the chiral symmetry “dynamically” in a naive

formulation, is forbidden by this boundary term.

The fermion propagator is given as an inverse of the folded Dirac operator

a3Gfolded
dwf = 2 (T+ + T0 + TT )Π+ (aDdwf)

−1 Π+ (T+ + T0 + TT ) , (C.17)

where the inverse is defined in the ordinary meaning for the positive bulk region 0 < x0 <

NT and in terms of the projected sub-space at the boundary

a4Dfolded
dwf Gfolded

dwf = T+ + P+T0 + P−TT . (C.18)
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D. Free fermion propagator

Inverse of the massless domain-wall fermion Dirac operator in momentum space is derived

according to the procedure of Ref. [30]. In this appendix we omit derivation and give the

result:

1

aDdwf(p)
=

(
−iγµ sin pµ + W − Ω−

)
GRPL +

(
−iγµ sin pµ + W − Ω+

)
GLPR, (D.1)

where Ω and W are defined in (2.8) and (3.37). GR and GL are defined as

GR(s, t) = G0(s − t) + A++eα(s+t) + A+−eα(s−t) + A−+eα(−s+t) + A−−eα(−s−t),(D.2)

GL(s, t) = G0(s − t) + B++eα(s+t) + B+−eα(s−t) + B−+eα(−s+t) + B−−eα(−s−t),(D.3)

G0(s − t) = C
(
eα(N5−|s−t|) + e−α(N5−|s−t|)

)
(D.4)

with exponent and coefficients given by

cosh α =
1 + W 2 + sin2 pµ

2|W | , (D.5)

C =
1

4W sinhα sinh(αN5)
, (D.6)

A++ = F (1 − We−α)(e−2αN5 − 1), A−− = F (1 − Weα)(1 − e2αN5), (D.7)

B++ = e−2α(N5+1)A−−, B−− = e2α(N5+1)A++, (D.8)

A−+ = A+− = B−+ = B+− = FW (eα − e−α), (D.9)

F =
C

eαN5(1 − Weα) − e−αN5(1 − We−α)
. (D.10)

This notation is valid for positive W and for negative case we define

e±α = cosh α ±
√

cosh2 α − 1 (D.11)

and flip their sign e±α → −e±α according to sgn(W ).

The physical quark propagator in momentum space is defined by picking up the bound-

ary components

a3 〈q(p)q(−p)〉 = (PLδs,1 + PRδs,N5)

(
1

aDdwf(p)

)

s,t

(δt,N5PL + δt,1PR)

= −iγµ sin pµGR(N5, N5) + WGR(1, N5). (D.12)

Ignoring the next to leading term in N5 the quark propagator has a simple form

a3 〈q(p)q(−p)〉 =
iγµ sin pµ

1 − Weα
. (D.13)
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[12] M. Lüscher, R. Sommer, U. Wolff and P. Weisz, Computation of the running coupling in the

SU(2) Yang-Mills theory, Nucl. Phys. B 389 (1993) 247 [hep-lat/9207010].
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